冰刻技术完全可以实现与EUV光刻机相当的精度。只不过要实现这个精度,必须让电子束直写光刻机的的分辨率达到纳米级别才行。
其实“冰胶+电子束”的效率是远远比不上“光刻胶+光刻机”的。因为要让水蒸气凝结在晶片上,还必须在零下140 进行,此外使用的还是电子束刻机,要一点一点的进行雕刻那速度比较慢。从制造效率上来看,这种冰刻技术是不如光刻机的。而冰刻的分辨率主要取决于电子束刻机,虽说电子束直写光刻机的精度已经达到了10纳米左右甚至以下的精度,但是国内电子束直写光刻机的精度在1微米,还没有达到纳米级别。事实上,冰刻技术只是将化学的光刻胶换成了水蒸气而已。
早在2018年,就发布了冰刻系统,这次的冰刻则是其升级版,主要就是将原料生产为成品。由于传统的光刻胶属于化学试剂,在光刻完成后还要进行清洗,清洗不干净的话就会导致良品率下降。而使用水蒸气凝固代替传统的光刻胶之后,就不存在清洗不干净这类问题了。
在电子束的作用下,凝固的水蒸气可以直接液化消失而不会残留在晶片上,这样一来就不会导致晶片被污染了,这是冰胶相对于传统光刻胶的优势所在。但是使用冰胶前,要将晶片放在零下140 的真空环境中,给其降温,再通入水蒸气。相对于传统的光刻胶来说,就多了这样一个步骤。估计当水蒸气凝固在晶片上之后,从拿出来,到光刻完成之前都要在0 以下的环境中进行操作,毕竟温度超过0 ,凝固的水蒸气就有可能液化成水,这也是相对于传统光刻胶的一个缺点。
由于冰刻系统的分辨率与电子束直写光刻机的分辨率有关,只要电子束直写光刻机的分辨率可以达到EUV光刻机的分辨率,那么使用冰刻系统生产的芯片的制程工艺就可以达到EUV光刻机的生产芯片的制程工艺。
10纳米。
现阶段,“冰刻” 系统已优化到 2.0 版本。对于 “冰刻 2.0”,仇旻说,“我们的目标是,在未来 3-5 年实现‘wafer in, device out’的全流程一体化、自动化的一站式微纳加工,也就是一个原材料进去,一件成品器件出来。”
300 纳米
目前,他们已经可以实现在薄至 300 纳米的冰上刻画图案,下图中最小的微型雪花直径仅 1.4 微米,所有比例尺长度均为 1 微米。
希望我的回答对你有所帮助。
西湖大学旗下的纳米光子学与仪器技术实验室,已经能够用冰刻机加工出数十纳米级别的芯片了。