首先,假设有一根数轴,上面有两个反向的点:+1和-1。
这根数轴的正向部分,可以绕原点旋转。显然,逆时针旋转180度,+1就会变成-1。这相当于两次逆时针旋转90度。因此,我们可以得到下面的关系式:(+1) * (逆时针旋转90度) * (逆时针旋转90度) = (-1)如果把+1消去,这个式子就变为:(逆时针旋转90度)^2 = (-1)将"逆时针旋转90度"记为 i :i^2 = (-1)这个式子很眼熟,它就是虚数的定义公式。所以,我们可以知道,虚数 i 就是逆时针旋转90度,i 不是一个数,而是一个旋转量。虚数可以指不实的数字或并非表明具体数量的数字。在数学中,虚数就是形如a+b×i的数,其中a,b是实数,且b≠0。剩下的i则为虚数(所有虚数单位记作i),i²=-1(所有实数的平方都是非负数)虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b×i的实部a可对应平面上的横轴,虚部b可对应平面上的纵轴,这样虚数a+b×i可与平面内的点(a,b)对应。